视频去水印是一个复杂的问题,具体实现取决于水印的类型(静态/动态、位置、透明度等)。以下提供几种常见场景的解决方案思路和示例代码:
一、静态水印去除(固定位置+不透明)
```python
import cv2
import os
def remove_static_watermark(input_path, output_path, watermark_pos):
读取视频
cap = cv2.VideoCapture(input_path)
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
frame_count = int(cap.get(7))
定义水印ROI区域x, y = watermark_pos
roi_width = 100
roi_height = 50
创建输出视频
fourcc = cv2.VideoWriter_fourcc('mp4v')
out = cv2.VideoWriter(output_path, fourcc, 30.0, (frame_width, frame_height))
for i in range(frame_count):
ret, frame = cap.read()
if not ret:
break
提取ROI区域
roi = frame[y:y+roi_height, x:x+roi_width]
去除水印(替换为黑色或背景匹配)
frame[y:y+roi_height, x:x+roi_width] = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
写入输出
out.write(frame)
cap.release()
out.release()
print("Watermark removed successfully!")
使用示例
remove_static_watermark("input.mp4", "output.mp4", (100, 100))
```
二、动态水印去除(基于FFmpeg)
```bash
使用FFmpeg命令行处理
ffmpeg -i input.mp4 -vf "select=not(lumapixelfilter=ismask=0.5)" -c:v libx264 output.mp4
```
三、深度学习去除(推荐使用预训练模型)
安装依赖:
bash
pip install torch torchvision
使用预训练的实例分割模型:
```python
import torch
from torchvision import models
from PIL import Image
加载预训练模型
model = models.detection实例分割模型名称(pretrained=True)
输入处理
image = Image.open("watermarked.png")
image = image.convert("RGB")
image = image.resize((800, 800), Image.BICUBIC)
image_tensor = torch.from_numpy(np.array(image)).unsqueeze(0)
检测水印区域
with torch.no_grad():
predictions = model(image_tensor)
获取检测框并去除
for i in range(len(predictions[0]['boxes'])):
x1, y1, x2, y2 = map(int, predictions[0]['boxes'][i].numpy())
image = image.crop((x1, y1, x2, y2))
```
四、高级方案(基于GPT-4V的AI修复)
- 使用OpenAI API:
```python
import openai
def ai_watermark_removal(input_path):
response = openai.ChatCompletion.create(
model="gpt-4v",
messages=[
{"role": "system", "content": "You are an expert in video processing"